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Different formulations for a two step CFD/CAA approach are investigated. The
acoustic field is simulated using linearized perturbation equations which are ex-
cited by sources determined from the unsteady compressible near field flow. The
sound generated by a cylinder in laminar flow at Mach number M=0.3 and Rey-
nolds number Re=200 is used as a test problem. It is examined whether the vis-
cous/acoustic splitting method of Shen et al., which is based on a simulation of the
incompressible flowfield, can be adapted to a compressible base flow simulation.
It is found that excessive artificial vorticity is generated in the wake of the cylinder
due to the excitation of hydrodynamic instabilities. A new set of governing acoustic
perturbation equations (APE) is proposed, which includes sources determined from
a compressible flow simulation. As shown for the test problem, the occurrence of
vorticity is prevented completely since the source solely excites acoustic modes in
the APE.

1 Introduction

The future goal of this research is the development of computational tools to simulate turbulence related
noise. The hybrid approach investigated in this paper predicts the acoustic field using a two step procedure.
To motivate this approach we briefly consider the noise generated by the turbulent flow in the vicinity of a
flat plate, fig. 1. In the first step, the unsteady compressible flow field in the vicinity of the sharp trailing
edge is simulated via a large eddy simulation (LES) [3,8]. Fig. 1 shows a sketch of the computational domain
used for the LES. Due to the large disparity in acoustic and hydrodynamic length scales, whose ratio scales
inversely proportional to the Mach number, as well as energy levels [9], the demands concerning grid reso-
lution, grid size, boundary conditions, and time steps differ for fluid and acoustic simulations. The larger
acoustic length scale allows to use coarser grids for a pure acoustic simulation. Therefore, the acoustic field
is computed with linearized perturbation equations in a second step using sources determined from the un-
steady compressible flow field. The integration domain of the acoustic computation contains the whole plate.
Hence, it allows to recognize diffraction at the leading edge and the prediction of directivities. This paper
focuses on a comparison of different perturbation equations and source formulations. The laminar flow over
a cylinder at a Mach M=0.3 and a Reynolds number Re=200 is considered as a test problem for this analysis.
First, a direct numerical simulation is conducted that provides a reference solution. Subsequently, several
source term formulations are applied to the cylinder flow. The results of the computation of the acoustic field
are juxtaposed to evidence the characteristics of the various approaches.

Paper presented at the RTO A VT Svmposium on "'AgeingMechanisms and Control:
Part A - Developments in Computational Aero- and Iydro-Acoustics' ",

held in Manchester, UK, 8-11 October 2001, and published in RTO-MP-079(l).
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2 Numerical Method

2.1 Discretization of the linearized perturbation equations

The aeroacoustic computations are based on linearized perturbation equations, which can be written includ-
ing a source term S for a non-uniform flow in Cartesian coordinates (xi, x2)

- A U- +B.U =S, (1)
+a ,x-

where U is the vector of the primitive variables of the perturbation quantities. Einstein's summation con-
vention is to be applied to the products with equal indices. To use body fitted grids the governing equations
are transformed to generalized curvilinear coordinates (4, 12 )

- + A B U = S with A i (2)
i~t D~i * Jx.

For the spatial discretization of eq. (2) the fourth-order dispersion relation preserving (DRP) scheme of Tam
and Webb [10] is used. This scheme is designed such that for a wide range of wavenumbers the dispersion
relations of the numerical scheme matches the physical dispersion relations. A first derivative with respect to
a curvilinear directiona1 is calculated for a quantity f, at mesh point l,m with a seven point stencil via

Appropriate coefficients aj of the DRP-scheme minimize the difference between the physical and numerical
dispersion relation over a chosen range of wavelengths and frequencies. In order to achieve fourth-order
accuracy six of the coefficient are determined by constraints following from a Taylor series expansion
around point 1,m , while the one remaining can be used to minimize the dispersive error. The DRP-scheme
yields a resolution of about 5.4 points per wavelength (PPW), while a central difference scheme of second
order yields the same resolution limit with 20 PPW, therefore for 3D-applications the number of points can
be reduced approximatly two orders of magnitude, compared to mainstream CFD spatial discretization
methods.

Close to boundaries one-sided stencils are used. The integration in time is carried out with the fourth-order
alternating two-step low dissipation and low dispersion Runge-Kutta scheme (LDDRK 5-6) proposed by Hu
[11 ]. To suppress spurious high frequency waves artificial selective damping (ASD) according to Tam and
Dong [13] has been used. The ASD is given as an additional source term Si.m in eq. (1) by

d - , u=m+i, I

A4, Re j=-3A,. Re. =3 ~
where Re,, is the mesh Reynolds numer. The coordinates xi are nondimensionalized with a reference length.
The scaling of the damping with the grid size is chosen such that the magnitude of the mesh Reynolds num-
ber is nearly constant for a homogeneous damping effect on a mesh with variable cell size. A constant back-
ground value of the mesh Reynolds number with a typical value of I / Re. = 0.05 and a slight increase close
to boundaries is used. The damping term provides a wavenumber dependent damping such that long waves
with scaled wavenumbers < I are nearly unaffected.
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3 Governing acoustic equations

3.1 Viscous/Acoustic Splitting Methods

The first formulation examined in this paper is based on the viscous/acoustic splitting technique first pro-
posed by Hardin and Pope [14,15] later modified by Shen and Sorensen [16,17].Using Cartesian tensor nota-
tions the governing acoustic equations read

-p + -- !0,
at axi

SL at X fki(U 1 + Uj)+ P0 UiUj',+p'8]= 0, (3)
aJt aIxi
DP' 2 DP' _ P

•--C -

at at at
with f1 = pu'i + p'U. In these equations the flow variables are decomposed into incompressible and com-

pressible primed perturbation variables
ui = U + uip= P P+p, p = p_ +p'.

The equations (3) are derived by introducing the decomposition of the flow variables into the Navier-Stokes
and the continuity equation and by subtracting the governing equations for incompressible flow. Further-
more, the difference between compressible and incompressible viscous terms is neglected. As explained in
section 3.3 the perturbation variables describe besides acoustic quantities also vorticity fluctuations due to
mean/acoustic interaction. Furthermore, the difference between compressible and incompressible viscous
terms is neglected. The perturbation quantities describe acoustic as well as non-acoustic unsteady and steady
quantities, which determine the difference between the compressible and incompressible solutions. The third
equation in (3) follows from the second law of thermodynamics. The local time derivative is used in combi-
nation with the constraint that the initial values of p', p' and entropy S satisfy the second law of thermody-
namics. It is assumed that the time variation of the entropy can be dropped if vortex sound is considered. The
unsteady incompressible velocity U, and pressure, P follow from an incompressible flow simulation. The

time derivative of the incompressible pressure in eqn. (3) is the major source term for the acoustic equations.
Even when the entropy is dropped in the pressure equation the relation between pressure and density is not
isentropic due to the non-vanishing right-hand side. Therefore, Hardin and Pope used a further decomposi-
tion of the density into p' = p" + p1 , where the double primed density denotes the isentropic density

fluctuation related to the single primed pressure and p, is a compressible density correction caused by the
incompressible pressure fluctuations. By introducing the additional density decomposition into (3), the for-
mulation presented by Hardin et al. [15] is obtained, where additional source terms containing p, occur on-
the right-hand side of the continuity and momentum equation, and the continuity equation becomes a gov-
erning equation for the isentropic density pertubation. Since this component can be directly computed from

the pressure via p = c2 p "it is computationally simpler to drop the additional density decomposition.
To associate the formulation of Shen et al. with the problem of sources determined from a compressible flow
simulation, first the system (3) is linearized over the time averaged incompressible flow simulation and then
using the governing incompressible equations is rewritten in primitive variables

- +xk- (P'Ukt puk)=0

at k_+-ku u+ (u," +, P' "P ~IU', I x•Pj (4)

axk P_ Xk P -aX

aP' -2 aP' _ f-- C2 o-
a 7t = -it

For the computations the time averaged mean flow of the compressible flow simulation is used instead of the
incompressible mean flow quantities since their difference is O(M 2 )small for low Mach numbers. If the

source term of the pressure equation in (4) is computed directly from the pressure of the compressible flow



(SYA) 17-4

simulation, the acoustic equations are excited by the acoustic pressure fluctuations contained in the com-
pressible solution. Due to the fact that their magnitude does not decay sufficiently fast with increasing dis-
tance to the cylinder they have a strong influence on the pressure levels computed via (4). It will be checked
whether a spatial Gaussian filtering of the source in eqn. (10) is sufficient to separate the important near field
hydrodynamic pressure fluctuations from the artificial far field ones. This issue will be addressed in the sec-
tion results and discussion.

3.2 LEE with momentum sources

The second formulation is based on the source term formulation proposed by Bailly et al. [I]. The governing
equations are the linearized Euler equations (LEE) which are linearized over the time averaged compressible
flow solution. The equation written in primitive variables read

-- +- (p U-k + p )-- 0
lt axk

+ Wk + + Hi =Si (5)at ax A' -5 axi

Lp'+ a (p- ,+ +y'u)+ HP =0.

The terms H, and HP depend linearly on the perturbation quantities, where the proportionality factors are

prescribed from mean flow quantities and gradients, respectively. Thus, depending on the sign of the coeffi-
cients these terms can cause an unstable growth. These expressions are neglected by Bailly et al. [1] in order
to suppress the occurrence of shear layer instabilities. Variables with a bar denote time averaged quantities.
The source term of the momentum equations was determined by the major non-linear contribution, i.e.,

S U au, + , au, 6
i =uaXk +k .(

The source term excites acoustic as well as vorticity components in the LEE such that the grid resolution has
to be fine enough to properly resolve the vorticity components. Thus, the advantage of reduced grid resolu-
tion allowed for the simulation of pure acoustic modes is lost. The source (6) has been used with a no-slip
wall boundary condition to prevent the occurence of unphysical high velocities in the vicinity of the wall.

3.3 Acoustic perturbation equations (APE)

The third formulation is based on the following acoustic perturbation equations (APE) [2]
ap'-+ af, 0,

at axi

)' -2 -- i(Uj + p;)-- U,ui + p"4O. I= pD o +pDll(P',P,!) + PDi.. (7)
at ax 

(

ap a C2 D P' a (p -(,)+ 'p as
at at at CP at

wheref, = pug + p'Ui. It is derived from the continuity and the Navier-Stokes equations without intro-

ducing any simplifications and follows from a decomposition of a general source vector of the linearized
Euler equations into acoustic and non-acoustic contributions in Fourier-/Laplace transform space. This
source term filtering [4] is valid under the constraint of using a uniform mean flow field in the LEE. An ex-
tension to non-uniform flow is possible similarly to the derivation of higher acoustic analogies from
Lighthill's acoustic analogy. The extension of Lighthill's acoustic analogy to a precursor of Lilley's equation
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by transferring convection terms from the source to the wave operator side was discussed by Ribner [7]. In a
second step the velocities have to be substituted using the momentum equationin order to get a scalar wave
equation. As shown in [2] convection effects can be taken into account in the perturbation equations by
shifting convection terms to the left-hand side, too. Due to the fact that rather a system of equations is solved
for all acoustic quantities than a scalar wave equation for one variable, the second step of substitution is not
necessary. The system (7) is the result of that analysis. As a formal finding of the source term filtering the
velocities are decomposed into irrotational acoustic variables ui and unsteady solenoidal base flow velocities
Ui, i.e.,

ui = Ui + u /.

The solenoidal velocity is computed from the vorticity w) -u 2 /lxI - auI lax2 of the compressible flow

simulation by solving the Poisson problem

-Ta a2'T a2'i
U • ---- -0.ax1 2 a X 2

One major source term of the system (7) is given by the term a/at(pAO), where pO matches in the limit
of M -- 0 the incompressible pressure P, as shown in [2]. Neglecting the compressible viscous terms this
quantity follows from the solution of

1a2(D D2(D a2 'i' 2TýLT a2T 8
ax2  ax2  aX2 (8)

which corresponds to the pressure poisson equation of an incompressible flow solver. From the source term
filtering it follows that the pressure is identified as acoustic variable. In general, one would expect a decom-
position of the pressure into an acoustic and a non-acoustic part called pseudo sound pressure. Note that the
d'Alembert operator of the wave equation for the pressure as variable contains as a steady state limit the
Laplacian operator and the related Lighthill equation changes in this limit into a Poisson equation for the
pressure. Thus, it also contains the hydrodynamic near field. Due to the properties of pF, however, this

quantity is interpreted as pseudo sound pressure and the pressure is decomposed accordingly into-

p = p_+ pU,
see also fig. 15. The primed perturbation density in (7) follows from the density decomposition

p = p-.+ p'.

In general, it also describes non-acoustic quantities. The terms DI ,ODI,DII1 on the left-hand side of the mo-
mentum equation are vorticity sinks, which cancel the vorticity generated due to acoustic/mean interaction
on the left-hand side. In the limit M -> 0 the eqs. (7) match the formulation of Shen et al. (3) under the same
assumption that entropy fluctuations can be neglected if low Mach number vortex sound is considered. The
remaining differences are the vorticity sinks on the right-hand side of (7). Since the incompressible flow
simulation does not contain the vorticity due to acoustic/mean interaction the missing sink terms allow the
occurrence of this vorticity contribution as part of the acoustic computation. As these vorticity components
occur in principle in the compressible- base flow simulation, the additional sink terms are necessary to pre-
vent the double computation of the discussed vorticity components.
The formulations used for the computations are obtained by introducing additional simplifications into the
eqs. (7). The future goal is to use the method to predict turbulence related noise, where the unsteady base
flow motion is mainly related to turbulent fluctuations. Neglecting the turbulent scattering of acoustic waves
it seems to be acceptable to use a time averaged base flow field. Furthermore, for small acoustic fluctuations
the non-linear terms can be dropped. Each vorticity sink term suppresses the vorticity generated by a related
term on the left-hand side of (7). By simultaneously dropping the relevant left- and right-hand side terms, the
generation of vorticity by the perturbation equations is prevented completely paying the price of neglecting



(SYA) 17-6

the acoustic source contribution of the left-hand side terms, too, which can be assumed to have a small influ-
ence. From this procedure the equations used for the computations read

S+ 
(P u 4 +P _

at xk)

au+ +_L(ffkUa I -0 (9)
,at Pxi k p- xi

at at at

4 Results and Discussion

The flow around a circular cylinder at Mach number M=0.3 and Reynolds number Re=200 was used as test
problem to compare different formulations of perturbation equations. The direct simulation of the com-
pressible flow was carried out using an AUSM scheme for spatial discretization. The 0-grid had a radial
extension of r/d=80 cylinder diameters and a resolution of 657 x 513 grid points in the radial and circumfer-
ential direction, respectively. Fig. 2 shows the perturbation pressure obtained from the CFD simulation by
subtracting the time averaged pressure field.
The acoustic computations were performed on an 0-grid with 257 x 161 grid points. The pressure derivative
was computed from the CFD solution using second-order central differences. One time period of the vortex
shedding, non-dimensionalized with the cylinder diameter d and the far field sonic speed was T=17.0. The
time period was split into 43 source time levels and during the acoustic simulation the time dependent source
was computed by linearly interpolating between two adjacent source data time levels. The details of the test
cases considered are given in table 1.

Definition
Case A Source term - ap/lt from CFD, perturbation equations (4), kinematic solidwall BC

Case B - (ap/lt), spatial filtering with o = 5.0, perturbation equations (9), kinematic solid wall BC

Case C - (ap/dt), spatial filtering with or 20.0, perturbation equations (9), kinematic s. wall BC

Case D Source - a(po_)/1t (eqn. (8)), perturbation equations (9), kinematic solid wall BC

Case E Source term (6), perturbation equations (5), H, and HP dropped, no-slip solid wall BC

Case F Source term (6), perturbation equations (5), no-slip solid wall BC

Table 1: Descriptions of computational cases

Fig. 3 shows the computed perturbation pressure field at time level T=200 using eqs. (4) and the pressure
derivative from the compressible flow simulation (case A, table 1). Compared with fig. 2 it is obvious that
the acoustic pressure levels are overpredicted by a factor of about three. Furthermore, the structure of the
vortex street is visible in fig. 3 indicating that vorticity is generated through the acoustic simulation. Fig. 7
shows the vorticity for this case. Compared with the magnitudes of the CFD solution, fig. 6, the vorticity
magnitude is unphysically high. Fig. 9 presents the pressure signal for case A in a receiving point rid=40
above the cylinder, indicating that the solution becomes unstable for T>200. The only source of vorticity is
due to acoustic/mean interaction and this magnitude was presumed to be clearly smaller than the magnitude
of the overall vorticity from the CFD solution. Obviously in conjunction with the gradients of the base flow
instabilities are excited.
To prevent the occurrence of vorticity in the simulation at all the APE formulation has been used for the
cases B, C, and D. For the cases B and C the source has been approximated by spatially filtering the time
derivative of the pressure to circumvent the excitation of spurious acoustic signals due to the acoustic signals
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contained in the compressible flow simulation. A Gaussian filter kernel was used to separate the important
near field hydrodynamic sources from the far-field acoustic signals, i.e.

•(p (D) =- • Pexp 2 (10)atat at (
Fig. 8 shows the magnitude of the vorticity obtained for case B. It is clearly visible that no vorticity occurs in
the acoustic simulation but a small amount due to the boundary condition is visible in the vicinity of the cyl-
inder. No vortex structures in the wake of the cylinder appear for cases B and C, figs. 4 and 5, respectively.
Case C was computed using a large filter width of o = 20.0in (10). Fig. 5 shows that the acoustic pressure
is still about three times too large. For a small filter width or = 5.0 the magnitude of the acoustic pressure and
the lobes tilted in the flow direction agree fairly well with the CFD solution. Nevertheless, in the CFD solu-
tion in fig. 2 a modulation of the pressure waves is evident in the upper and lower area downstream the cyl-
inder. As indicated by the direct simulation of Hatakeyama [6] for the cylinder problem using a high order_
compact finite difference scheme, according to the cases B and C no secondary lobes do occur. Thus, it is
fair to assume that the low order scheme used for the direct simulation might fail to resolve the acoustic field
properly. Fig. 10 depicts the perturbation pressure of the CFD simulation along the intersection line X=O for
different time levels T during one period of vortex shedding. A modulation of the pressure distribution is
visible such that no common envelope can be identified in the figure. Furthermore, the decay of the pressure
is smaller than cc r-1/2' pointing out the difficulties to resolve the acoustic field with common CFD tools.

Fig. II shows results of the various formulations described in table 1 for the decay of the pressure ampli-
tudes. The curve related to case E is computed using the system (5) without the terms Hi and HP. It is clear

from fig. 11 that the acoustic pressure levels are underpredicted. Using the term Hi and HP, case F, a large

increase of the vorticity magnitudes in the computational solution is observed and the acoustic pressure lev-
els are overpredicted. The result of case B and case D are computed applying the APE formulation. Case D is
computed with the source according to eqn. (8), therefore the generation of spurious acoustic/acoustic signals
is completely prevented. Case B is computed using a small filter width. The magnitudes of the pressure am-
plitudes are slightly smaller for case D, indicating that even with small spatial filter width used in case B still
spurious acoustic signals are excited. The magnitudes of the pressure amplitudes of case B and D seem to be
reasonable, compared with fig. 10. The directivity computed for the first harmonic frequency for case B is
shown in fig. 12. Due to the mean flow the two lobes are tilted in the upstream direction. The result is com-
pared with an analytical result for a 2D dipole in constant mean flow according to Guo [5]. The direction of

the highest pressure amplitude follows to be 0 = ±115', which agrees fairly well with the computational
result. Fig. 13 shows the decay of the effective pressure value for case B. In agreement with the asymptotic
behavior of the 2D Green function, the pressure level decay is proportional to the power of-1/2.
Fig. i4 shows a contour plot of the pressure field for case D. Pressure levels as well as directivity agree_
quantitatively with the CFD solution in fig. 2.

5 Conclusion

Different formulations for a hybrid two step CFD/CAA approach have been investigated. As a 2D test case a
laminar flow over a cylinder at Mach number 0.3 and Reynolds number 200 has been used. It was found that
small vorticity sources due to acoustic/mean flow interaction in conjunction with a non-uniform mean flow
are sufficient to generate excessive artificial vorticity in the acoustic solution. The generation of vorticity
during the acoustic simulation can be successfully prevented when acoustic sources are used that solely ex-
cite acoustic modes in the governing equations. The evaluation of sources based on pressure derivatives from
a compressible flow simulation yields large errors in the computed acoustic pressure levels due to the excita-
tion of acoustic signals from acoustic signals contained in the CFD solution. The amplitude of the CAA
computed acoustic signals could be reduced to a meaningful level if the acoustic source was spatially filtered
in the vicinity of the cylinder to separate the essential hydrodynamic near field from the acoustic far field. An
acoustic source has been computed using the vorticity of the compressible flow simulation. The occurrence
of acoustic/acoustic generated spurious signals is suppressed completely. Applying this source the pressure
magnitudes, the directivity of the computed sound field, and the decay of the pressure with increasing dis-
tance to the cylinder are reasonable.
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6 Figures
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Fig. 1: Sketch of the computational domains to compute trailing edge noise with the hybrid approach; the
CFD simulation resolves the vicinity of the trailing edge whereas the computational aeroacoustics (CAA)
domain includes the whole airfoil section due to the less stringent demands concerning grid resolution
thereby allowing to recognize scattering at the leading edge and the prediction of directivities
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Fig 2: Perturbation pressure from the unsteady Fig. 3: Pressure from the CAA solution
CFD simulation at time level T=200, Case A, tab. 1
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